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A theoretical framework is given, upon which to examine the dispersion relation of 
random gravity waves. First a weakly nonlinear theory is developed to the third-order 
for a statistically stationary and homogeneous field of random gravity waves. Both 
the spectrum of forced waves and the nonlinear dispersion relation are expressed in 
terms of the spectrum of free waves under the assumption of the Gaussian process 
for the first-order surface displacement. Next a method is proposed by which to 
separate each of the spectra of free and forced waves from the measured spectrum. 
This gives practical and powerful means of investigating the statistical structure of 
wind waves. 

1. Introduction 
To a first approximation, ocean waves can be described as a superposition of 

statistically independent free waves which have random phases and satisfy the linear 
dispersion relation. Obviously the dispersion relation is a keystone in the investigation 
of waves. For example, transformation from the spectrum of wave-slope to that of 
the surface displacement is totally dependent on the dispersion relation. 

Recently, however, several laboratory experiments have brought up suspicions 
against an approximation of the linear dispersion relation in wind-wave fields. The 
observed dispersion relation deviated far from the linear one for frequencies near 
to or higher than twice the spectral peak frequency, which suggests the existence 
of nonlinear characteristics in wind-wave fields. 

Among studies on nonlinear random surface waves, those of Tick (1959), Phillips 
(1960), Hasselmann (1962), Longuet-Higgins & Phillips (1962), Huang & Tung (1976), 
Weber & Barrick (1977) and Barrick & Weber (1977) are related to our present work. 
They have discussed the nonlinear spectrum or the nonlinear dispersion relation. In 
their studies, however, the dispersion relation has not been formulated to the extent 
that it may be directly compared with observations. So, the present paper is intended 
to provide a theoretical framework on which to examine the dispersion relation of 
measured wind waves. This framework is composed of two parts: first, a weakly 
nonlinear theory to the third order with respect to the surface displacement (to the 
second order with respect to the energy spectrum); secondly, a shorter but practically 
important part, a method to separate each of the spectra for free and forced waves 
from the measured spectrum. 
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The last three of the aforementioned studies are referred to briefly here, since they 
have treated the same subjects as the present investigation. The paper of Huang & 
Tung is a stimulating one. Unfortunately, however, the derivation of equation (14) 
or (15) in Huang & Tung appears to be erroneous since the Fourier-Stiltjes coefficient 
is taken as a function of both position and wavenumber. Although the results of Weber 
& Barrick and Barrick & Weber are very similar to ours, it  is easy to see that their 
formulation and ours are different in many aspects. In particular they start with deter- 
ministic linear waves in limited areas whereas we consider stochastic properties in 
infinite regions and the perturbation of linear waves is not used from the beginning. 
Consequently our derivation takes quite different form from theirs. Moreover our 
method to separate free and forced waves is completely new and clear. Without this 
method and idea, comparisoy of theory with observation is impossible. 

2. Formulation 
We formulate the problem along the same line as that of Phillips (1960) except that 

the time differentiation is replaced by the multiplication of ( -  io), where w is the 
angular frequency. 

Consider a field of deep-water random waves, statistically stationary and homo- 
geneous. Since we consider irrotational motion of an incompressible fluid there exists 
a velocity potential @(x, z, t )  by which the velocity vector V is expressed as V = V @  
Here x = (2, y) are the horizontal co-ordinates, z the vertical one (positive upward) 
and t is the time. The equation of continuity becomes 

The solution of (2.1) with the condition that @ vanishes as z + - co is given formally 
by 

where K denotes (w,  k), k being the wavenumber vector; the increment dA(K) is a 
random variable of K = (w,  k) and x = k.x-wt is the phase. This is the Fourier- 
Stieltjes representation of the velocity potential where the integration is over the 
entire wavenumber-frequency space. In the same way the surface displacement 7 can 
be expressed as 

n 

The kinematic and dynamic boundary conditions to be satisfied by Q, and [ at the 
surface are 

and 
a r / a t + V @ . V r  = aQ,/az at x = 7, (2.4) 

a q a t  + #(Va>)z = - 7 at z = 7, (2.5) 

where the acceleration due to gravity is taken as unity for convenience. 
For the purpose of eliminating dA(K) and obtaining the equation for dB(K), we 
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substitute (2.2) and (2.3) into (2.4) and (2.5) and expand the equations formally 
following the usual procedure (see Phillips 1960). For example, we have 

(VW, * vr 

I = JK JK, 0% ( K )  dB(K1) exp [i(X + X l )  + I kl r I ( - k . k,) 

= JKIK, dA(K)dB(Kl) exp [ i ( X  + X l ) l (  - k . kl) (1 + lklr + Slk1232 + .. .) 

=SgJK,dA(K)  dB(Kl) exp P ( X  + X d (  - k .  k,) (1 +IK* Ikl W K , )  exp (iX2) + . . . ) * 
(2.6) 

After a simple though lengthy manipulation we obtain the equation for dB(K) to 
the third order: 

(2.10) i 
Here (k, k’) = k . k’/lk( (k’l denotes the cosine of the angle formed by two vectors 
k and k. 

Note that some symmetrizations are made in the above derivation for the later 
computational convenience, so that we easily have 

f,(O, K )  = f,(K, 0) = 0, (2.11) 

(2.12) 
and 

Equation (2.7) is the one required; in particular for infinitesimal waves, it  states 
that W ( K )  must vanish so that dB(K)  may not. That is, for such K that dB(K) + 0 
the linear dispersion relation W ( K )  = 0 must be satisfied. 

For further development we assume that 

(2.14) 

dBl(K) denotes the first-order free waves and so on. Next we assume the 
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FIGURE 1. Contours of the kernel P ( K ,  K , ) ,  where K = (0, k) = {o,lkl,O} is assigned ~LS {1,1,0} 
while K ,  = {ol, [k,l, el} is varied. The free wave K ,  is represented by two quantities, i.e. the 
frequency w1 and the direction 8, of propagation, because lkll is determined from the dispersion 
relation. 

Gaussian process for ql, as Tick (1959) or Hasselmann (1962) has done. Then we have 

dB,(K) dB,(K') dB,(K") ( dK dK' dK" 

(2.15) 

(2.16) 

and 

dB,(K) dB,(K') dB,(K") dB,(K") ( dK d K  dK"dK" 

= $,(K) $,(K") S(K + K')  S(K" + K") + $,(K) c#,(K") S(K + K") S(K' + K")  

+ $,(K) $,W) S(K + K")  S(K'  + K"),  (2.17) 

where the overbar denotes ensemble average, S(K) the delta function and dK = dw d k .  

For dB(K),  the assumption of statistical stationarity and homogeneity gives 

(dBgg!K')) = $(K)S(K+K') .  (2.18) 

Multiplying (2.7) by dB(K,) and taking ensemble average with the use of (2.11) SK. 
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FIGURE 2 (a). For legend see next page. 
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through (2.18) we finally obtain 

where Q(K, K,) = 2(f,(K, K,))2; (2.20) 

and 

4(f2(K9 K1))2 - f3(K,  K,, - K,) - f3(K,  K,, K )  - f3(K,  K ,  K,). (2.21) 
W ( K  - Kl) 

P ( K , K , )  = - 

These are the basic equations for the following analysis. We shall firstly investigate 
free waves and their nonlinear dispersion relation and then forced waves. 

(1)  Free waves. Free waves here are defined as those which can have non-zero #,(K).  
We reasonably assume that free waves approximately satisfy the linear dispersion 
relation. In  other words, free waves exist only near W ( K )  = 0. Then we have from (2.19) 

(W(K)  +SKIF(K K,) $,(K1)%] # ( K )  = SKI G(K9 W ( K )  #,(K,) #,(K- K,) dK,. 

(2.22) 

The product of #,(K1) and Q,(K - K,) vanishes except when W(K,) + W ( K  - K,) + 0, 
which is incompatible with the condition W ( K )  + 0. Therefore, the right-hand side of 
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FIGURE 2. Contours of the increase in AC(w,O)/C,(w) normalized by nonlinearity E,uR, where 6' 
is measured from the main direction. The free wave spectrum is assumed to be of Pierson- 
Moskowitz as is shown on the left hand side. (a) A coszO type directional distribution is assumed. 
( b )  A cos86' type directional distribution is assumed. 

e 

(2.22) can be put equal to zero. Hence, in order for # ( K )  to be non-zero the following 
equation must be satisfied: 

Alternatively equation (2.23) can be expressed as 

(2.23) 

(2.24) 

where AC(K)  z C(K)-Co(K)  = w/(k( - 1/w 

and Co(K) = l/w is the phase velocity of linear waves. Thus we may interpret (2.23) 
or (2.24) as a nonlinear dispersion relation for weakly nonlinear random waves. In 
fact for a uni-directional wave field, (2.24) may be expressed as 

(2.25) 

which is in agreement with the result of Longuet-Higgins & Phillips (1962) (see 
appendix). 
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FIGURE 3 (a). For legend see next page. 

The kernel F ( K ,  K,) denotes the magnitude of the contribution to AC/Co from free 
waves K,. More conveniently it can be rewritten as 

w, K,) = B{wc K,) + W K ,  - K,)} 

+2ww,(lkl +IklI)(k,k,) 
-+lk+k,l {w(k,k+k,)+w,(k,, k+k1)}2 
-31k-k,( {w(k,k-k,)+wi(ki,k-k,)}2. (2.26) 

In figure 1 the contours of P ( K ,  K,) are shown when w = 1, Ikl = 1 and the pro- 
pagation direction 0 = 0". We can see that the phase velocity of the wave K increases 
owing to the nonlinear effects from other waves propagating in the direction within a 
certain angle slightly more than 90". On the other hand, waves propagating in the 
opposite direction contribute to decrease the phase velocity. Note that setting a parti- 
cular K means no loss of generality. For, if necessary, K ,  = (w,, Ikll, 0,) is to be read 
as {wl /w,  1 k,( /I kl ,8, - 01, where {w,  I k J ,  e} denotes the polar co-ordinate representation 
of k. 

In  order to illustrate the increase in phase velocity due to nonlinearity figures 2 
and 3 are presented, where Pierson-Moskowitz and JONSWAP spectra are adopt'ed 
as typical examples. Assuming these spectra to be of free waves with directional 
distribution of cosp 0 type, we can calculate AC(w, B)/Co(w) normalized by the strength 
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FIGURE 3. Contours as in figure 2 but for JONSWAP spectre. (a) A cos28 type directional 
distribution is assumed. (b )  A cos80 type directional distribution is assumed. 
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of nonlinearity E,wQ,, where El is the total energy of free waves and w, the peak 
frequency. The figures show the effects of the spectral form and directional dis- 
tribution on AC/C,,. We can see, for example, that the more gradual the spectral form 
(Pierson-Moskowitz type) and the more concentrated the directional distribution, the 
greater the increase in phase velocity expected, if nonlinearity El 61% is held constant. 
These features are easily understood from the properties of the kernel function 
P ( k ,  k,) displayed in figure 1. 

( 2 )  Forced waves. For Knot close to W(K) = 0 we find forced waves: 

where 

(2.27) 

(2.28) 

These forced waves are merely accompaniments of free waves. In many cases of 
wind-generated waves, however, the frequency spectrum of forced waves, qjz(w, k )  dk 
seems to prevail over that of free waves $751(w, k) dk ,  for frequencies close to twice 
the spectral peak frequency. This fact may be of crucial importance when the phase 
velocity is determined experimentally by the cross-spectrum method. 

Figures P 6  are presented to show in detail the generation of forced waves. The 
forced wave is expressed as 

K = (w,  k) = K1+ K2 = (w1+ ~ 2 ,  k1+ k2). 
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Here both K ,  and K ,  are free waves, so that 

K ~ = { ~ i , ] k j ~ , O , } ~ { w , , w ~ , O , } ,  (j= 1,2) .  

In these figures K ,  is assigned as { 1 , 1 ,  Oo}  while the counterpart K ,  + {wz, w;, O,} is 
varied. Figures 4 and 5 respectively show 8 and Ik\ of the forced wave K = (w ,  \k\, 8). 
Of course, the frequency w equals to w, plus w,. From figure 5 we observe that forced 
waves cannot satisfy the linear dispersion relation (w2 = (kl) except the trivial case 
w2 = 0. Figure 6 shows contours of B(K,  K,)  which indicate the magnitude of the 
contribution to the spectrum of forced waves c$~(K) from free waves K ,  and K,. 
Similarly to figure 1, the choice of a particular K ,  leads to no loss of generality in these 
figures. 

With these preparations, we have the correlation R(1,7) of the surface displacements 
of two points separated by a distance I :  

R(1,7) = [(x, t )  q(x + I ,  t + 7 )  

I = JUJk exp ( - ik  . 1 + iwt) Q(w, k )  d k  dw 

= l0,C,.(w, 1) eiwdw, J 
(2.29) 
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FIGURE 5. Contours of the magnitude of wavenumber I kl of the 

forced wave. For detailed legend see figure 4. 
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FIGURE 6. Contoiirs of the kernel d ( K , K , ) .  For detailed legend see figure 4. 
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where 7 is a time delay and C,(w, 1) is the cross spectrum: 

C,(w, 1) = exp [ - ik .l] $(w,  k) dk = exp [ - ik .  I] {$l(wl, k) 
l k  J k  

727 

3. Separation of the spectrum of forced waves from measured spectrum 
To apply the preceding theory to the analysis of the observed waves i t  is necessary 

to know $,(K) and #@). Since the measured spectrum of the surface displacement 
is the result of both free waves and forced waves, we must separate it in a reasonable 
way. Fortunately, the separation is possible to a rough extent by the following iterative 
method. 

Within our present framework we consider that 

lC'obs(W) = $l(w) + $2(@)9 (3.1) 

where kobs(w) is the frequency spectrum measured, while kl(w) and $,(w) are those of 
free and forced waves respectively. The frequency spectra (i = 1,2)  are related 
to $ i ( m  by 

Since we do not possess such reliable information about the directional distribution, 
we assume a suitable form as S ( w ,  0) .  Then we have the spectrum of free waves: 

&(w, k)dwdk = $ 1 ( w ) S ( w , 8 ) S ( ( k l - ~ ~ + ~ ( ~ , 8 ) ) d ~ d l k l  d0, (3-3) 

where E ( W ,  0) is an increment of 1 kl deduced by the non-linear dispersion relation (2.23). 
The spectrum of forced waves #2(K)  is given by (2.27): 

The problem is to solve (3.1) through (3.4) on the data of $obs(W). Weput the following 
approximations at  zero : 

@io)(@) = 0, $io)(K)dK = O ,  $:o)(w) $obs(w) ,  (3.5)-( 3.7) 

#io)(K) dK = $j0)(w) S(W, 8) 6( I kl - w') dw dl kl d0, (3.8) and 
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where an overscript in parenthesis denotes the order of iteration. The first and second 
approximations ( j  = 1,2) are 

,- 

$ d f ) ( ~ )  = jrq5ii)(u, k ) d k ,  (3.10) 

w ( W )  = $om (0) - $2’ ( W ) .  (3.11) 

$1’) ( K )  dK = dod /k l  d8$,(n ( w )  S(W, 8)  6( IkJ - w’). (3.12) 

A preliminary computation for our data of wind-generated waves showed that this 
iterative method yields very rapid convergence and that the second approximations 
are sufficient for our present purpose of studying the dispersion relation. 

and 

In order to find the nonlinear dispersion relation, we use (2.24): 

(3.13) 

C(W,  8) is calculated from (3.13) and q5j2) ( K )  is modified to give 

$J2*”(K)dK = dodlkl d8@i2)(w)S(w, 8)6( lkl  - w ~ + c ( w , ~ ) ) .  (3.14) 

The third-order approximations associated with this change become 
n 

$J3) ( w )  = J QJ3!  (w ,  k )  dk ,  
k 

(3.16) 

4. Discussion 
It appears that the present theory is, by nature, only valid for frequencies less than 

about three times the spectral peak frequency. A higher order expansion is required to 
make the theory valid for higher frequencies. Such an expansion seems possible at 
first. But it is only to the third-order that wave fields can be statistically stationary 
and homogeneous without contradictions; energy transfer between waves does occur 
by nonlinear interaction in higher orders (see Hasselmann 1962). This energy transfer 
is reflected on the appearance of singularities when a higher order expansion is made 
along our line. 

Although deep water is assumed throughout this paper, the theory is easily general- 
ized to the case of finite depth. Practically, however, the case of deep water will be 
sufficient. 

The present theory includes some assumptions and simplifications, which are to be 
examined a posteriori. Comparison of the theory with experiments will be made in 
detail in a later paper (Mitsuyasu, Kuo & Masuda 1979), where we will find some 
interesting features of wind waves arising from nonlinearity. 

In  summary we can say that the present theory provides a rather powerful means 
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of analysing the nonlinear wind waves for frequencies less than about three times the 
spectral peak frequency. Other than the problem of the dispersion relation (cross 
spectra), at  least three possible applications are pointed out. 

( 1 )  Comparison of the observed bispectra and the theory of Hasselmann, Munk & 
MacDonald (1963). The theoretical bispectra must be calculated from the spectra of 
free waves and not the observed spectra. The present method to separate the spectra 
of free and forced waves is useful. 

(2)’A phenomenon which is called overshoot. The magnitude of the second spectral 
peak may be predicted to a certain extent. Conspicuous examples of this phenomenon 
are expected when nonlinearity measured by E, w& is strong as in a laboratory. 

(3) The function which transfers the spectra of the pressure (or the velocity) in a 
definite depth to those of the surface displacement. So far, the frequency w has been 
connected by the linear dispersion relation to the wavenumber which is a t  the same 
time the vertical decay rate of the wave motion. However, it is obvious that the 
transfer function thus determined gives erroneous results for frequencies where 
forced waves are larger than or comparable with free waves. Therefore separation of 
free and forced waves is indispensable to obtain the true transfer function for those 
frequencies. 

We wish to express our hearty thanks to Mr K. Eto, Mr M. Tanaka and Miss N. 
Uraguchi for their assistance in preparing the manuscript. 

Appendix 
Suppose that a dispersion relation changes by a small amount due to a certain 

cause, say, the nonlinearity or the change of the external fields. Then we may have 
the modified dispersion relation for fixed k :  

C ( k )  w / k  = Co(k) +eg(k) ,  (A 1)  

where C,(k) is the basic phase velocity and 8 denotes a small quantity. That is, the 
increase of the phase velocity with k fixed is expressed as 

ACk(k) = eg(k).  (A 2) 

On the other hand, in the analysis of the experimental data it is much more con- 
venient to rewrite (A 2) as the expression based on frequency. For that purpose we put 

w = IcC,(k) + ekg(k) = ko Co(ko), (A 3) 

where k, means the wavenumber when e = 0. Equations (A l) ,  (A 2) and (A 3) yield 

w w  ACk(kO) AC,(w) = --- 2 
k k, ’ 1 + k,(ln Co(ko))’ ’ 

the prime denoting the differentiation with respect to k .  In  particular for surface 
gravity waves Co(k) = k) ,  so that 

Ac,,,(w) + 2hCk(ko). (A 5) 

This relation explains the apparent difference of factor 2 between the result of 
Longuet-Higgins & Phillips (1962) and that of ours (2.24). 
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